A Fiber Bragg Grating-Based Dynamic Tension Detection System for Overhead Transmission Line Galloping
نویسندگان
چکیده
Galloping of overhead transmission lines (OHTLs) may induce conductor breakage and tower collapse, and there is no effective method for long distance distribution on-line galloping monitoring. To overcome the drawbacks of the conventional galloping monitoring systems, such as sensitivity to electromagnetic interference, the need for onsite power, and short lifetimes, a novel optical remote passive measuring system is proposed in the paper. Firstly, to solve the hysteresis and eccentric load problem in tension sensing, and to extent the dynamic response range, an 'S' type elastic element structure with flanges was proposed. Then, a tension experiment was carried out to demonstrate the dynamic response characteristics. Moreover, the designed tension sensor was stretched continuously for 30 min to observe its long time stability. Last but not the least, the sensor was mounted on a 70 m conductor model, and the conductor was oscillated at different frequencies to investigate the dynamic performance of the sensor. The experimental results demonstrate the sensor is suitable for the OHTL galloping detection. Compared with the conventional sensors for OHTL monitoring, the system has many advantages, such as easy installation, no flashover risk, distribution monitoring, better bandwidth, improved accuracy and higher reliability.
منابع مشابه
Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines
In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber...
متن کاملOverhead Transmission Line Sag Estimation Using a Simple Optomechanical System with Chirped Fiber Bragg Gratings. Part 1: Preliminary Measurements
A method of measuring the power line wire sag using optical sensors that are insensitive to high electromagnetic fields was proposed. The advantage of this technique is that it is a non-invasive measurement of power line wire elongation using a unique optomechanical system. The proposed method replaces the sag of the power line wire with an extension of the control sample and then an expansion ...
متن کاملThe Reusable Load Cell with Protection Applied for Online Monitoring of Overhead Transmission Lines Based on Fiber Bragg Grating
Heavy ice coating of high-voltage overhead transmission lines may lead to conductor breakage and tower collapse causing the unexpected interrupt of power supply. The optical load cell applied in ice monitoring systems is immune to electromagnetic interference and has no need of a power supply on site. Therefore, it has become a hot research topic in China and other countries. In this paper, to ...
متن کاملNonlinear Free Vibrations of Coupled Spans of Overhead Transmission Lines
The weakly nonlinear, freely vibrating motion of a system of coupled spans of suspended overhead transmission lines is studied. It is shown that the natural vibration is the gravity mode, of which the unsteady tension component vanishes in the first harmonic. The problem was born out of a study of the phenomenon of galloping, which is a high amplitude periodic oscillation of overhead transmissi...
متن کاملUnique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating
In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...
متن کامل